γ線で宇宙と地球を見る

谷森達¹, 窪秀利¹, 身内賢太朗², 水本哲矢¹, 水村好貴¹, Parker, J.¹, 古村翔太郎¹, 岩城智¹, 澤野達哉¹, 中村輝石¹, 松岡佳大¹, 佐藤快¹, 中村祥吾¹, 高田淳史³, Arvelius S⁴, Turunen E⁵, Yamauchi, M⁶ ¹京大大学院理学研究科²神戸大理学部³京大生存圏研究所⁴ルーレオエ科大宇宙工学科 ⁵EISCAT⁶スウエーデン宇宙科学研究所(IRF)

02/02/2013 @宇宙ユニットシンポ

X,γ線放射(原子、原子核から)

「藤 0.1~~10 Mev (× ~~10 m) 原子核内の核子からのガンマ線 (線スペクトル)

Line-ガンマ線(元素合成)

MeVガンマ線天文学とは

GRB => 宇宙最大事象 10-1000倍のSuper Nova

0 100 Seconds Since Trigger (000524 : 545.52940)

High energy electrons in magnetosphere

MeV electron & ion in Radiation belt

Modified from Prof. Ohmura (Kyoto)

極域ガンマ線バースト と相対論的電子降下現象 (Relativistic Electron Precipitation: REP)

MIRROR

FART

Figure 1. X-ray imager data taken during the relativistic electron precipitation event of August 20, 1996. The X-ray count rate between 20 and 120 keV is averaged over 1 s. The 10–20 s modulation is most clearly visible superposed on the peak starting near 1545 UT.

Micro Burst(1秒程度の激しい変動)

0.0

-- Small pitch angle => Low mirror point B_m=B_{eq}/sin²α_{eq}

高エネルギー粒子降下現象と成層圏大気化学

MAXIS(2000) -> BARREL(Antarctic balloon exp.)

9 hard-events +16 soft-events/18days

- → Ge γ 線スペクトル検出器(6cm²)
- → X線オウンホール画像検出器 視野[~]1str
 - (雑音除去能力無し)
- No Imaging results

RHESSI satellite

~300 km ~40 - 80 km

Elves

100

D.M.Smith et al. Science; 2005; 307, 5712 RHESSI

なぜMeVガンマ線天文学は困難か

放射雑音ガンマ線が圧倒的に多い! 雑音なければ有効面積数10cm²で~千天体観可能 1. アルベド放射線が強い 宇宙線による衛星・装置の放射化(RI製造) 2 V.Schönfelder(2004)の提言 低雑音化が最重要 高角度分解能→高エネルギー分解能 1 2. 雑音除去のための冗長性(TOF, Kinematics, エネル ギー損失率dE/dx など) **COMPTEL**ではTOFが有効、雑音を10分の1に低減 3. ガンマ線到来方向決定(仰角 +方位角) 最重要! 低物質量(放射化量の低減) 4 前方、後方検出器の同時計測幅を小さくする 5

COMPTEL : TOFにより中性子は除去可能で議論されていないが、 Compactな次期コンプトンカメラではTOFは困難。

最先端Compton Camera

Le Xe TPC 気球実験 8hr 2000

- ◆ VETO 無し
- → 0.1-10MeV 予定有効面積 ~20cm²
- ◆ 実際は1-10MeV 予想Crab ガンマ線
 ~50ガンマ線.
 但し、不検出
- → 実際の推定有効面積 ~2cm2
 主眼、有効面積の増大、
 雑音への提言項目 4?

- ← Crab 4_(8hrs) with NLEM 法
- → 視野3str (BGO 8str)
- ↓ 0.3-1.5MeV 有効面積 6cm²
- ← Simulation 3800 $\gamma \rightarrow 667 \gamma$
- ← Crab方向の雑音~29000 (S/N~0.02)

 主眼、高エネルギー分解能

 雑音への提言項目 1.

電子飛跡検出型コンプトンカメラ(Electron Tracking CC: ETCC)

SMILE-II in the North Pole (2014~2019?)

SMILE-II (2009~)

SMILE-II最終形 現行F.M.は最終予定のシンチ レーター半分

Sensitivity for the Crab Observation (Japan) 2009年当初の想定 0.5cm² @300keV (35km height,) Crab観測 大樹町で Significance ~5σ /6時間

SMILE-II 検出効率の大改善

ETCC(10x10x15cm)Ar 1atm 2x10⁻⁶@662keV

ガスCF4 3気圧で10cm² シンチレーター2倍で20cm²

改善型 ETCC の画像(662keV)

簡単な解析でOK エネルギー損失率dE/dx cut + total Energy cut + (a-Cut)

SMILE-II からの発展

30c角SMILE-II(シンチレーター 圧力 容器外、一部穴あり)最大~15cm²

宇宙の始まり POP-III GRB 検出

(2012)

SMILE-II現状

2月 熱真空試験@ISAS 7月 加速器環境試験@RCNP 秋 再度熱真空試験、準備OK

まとめ

- MeVガンマ線は宇宙最初の星から、太陽風、地球の高層気象 現象など、新しい地球と宇宙をつなぐ窓と期待される。
- ▶ ETCCが低雑音技術を実現、高感度観測の手段が見えた。
- ▶ SMILE-II北極周回気球観測 2014年観測希望、
- ▶ ERG、EISCATとの国際共同観測でオゾン層の謎へアプローチ
- ▶ GRBの新しい観測で宇宙最初の星発見の可能性を探る。
- ▶ 小型衛星(40cm角ETCC)で約千のガンマ線天体発見が可能、 地球ガンマ線の常時観測も可能
- ➤ さらに30x30cm箱衛星で、高性能X線偏光衛星(年100個観測)
- ▶ 現在、JST微弱放射線画像装置実用化(堀場製作所)、京大キャン医工連携事業(医療画像装置応用)が進行中。

一方向撮影による3D可視化

ETCCの特徴 (SPD) を利用した3D画像

^{99m}Tc +¹⁸F 新しいモダリティー

粒子線治療オンタイム・イメージング試験 @RCNP

Position (cm) Braggピーク

20

-15

-10

-5

0

Position (cm)

10

15